CFP Presentation

Team Affordable Insulin Pump

Affordable Insulin Pump

Team Introduction

- Mckayla Whitehead
- Josh Stubbs
- Cherry Gregory
- Young-Jun Jeon
- Product Description
 - Infusion pumps are used by insulin dependent diabetic patients.
 - Delivers the insulin directly into the patient so they can control their blood sugar with minimal effort.
 - Current models are very expensive, even with health insurance

Problem Statement

- Insulin pumps need to deliver insulin to insulin-dependent diabetics accurately.
 - Very expensive
 - Need to replace whole system if any part fails
- Affordable infusion pump kit that can be assembled by the user
 - Product needs to be able to safely and accurately deliver a precise dose of insulin to the customer on demand.
 - Easy to replace damaged parts
 - Fully customizable
 - Reduce the cost of conventional insulin pumps (with health insurance)

Outline

- 1. Milestones/Key Dates
- 2.Budget

3.CFP

- a. Description
- b. Models
- c. Testing
- d. Demo
- 4. Summary

Fall 2016 Milestones

Date	Task/Milestone	Status	Comments
29-Sep	Determine and Order Microcontroller, LCD Screen and Speaker	Complete	
1-Oct	Design CAD model of keypad, Determine Sensors to be used and if Microchip is necessary.	Complete	
7-Oct	Coding for LCD Screen and Speaker, Start CAD for Motor/Pump	In Progress	Speaker and LCD Coding to be updated to incorporate Keypad
17-Oct	Begin to Electronic Configuration of Microchip	Eliminated	Team determined this component was no longer necessary
21-Oct	FEA analysis of Motor/Pump assembly	Complete	
1-Nov	Order and Test Sensors, and Coding for Keypad	In Progress	Sensors need to be tested still. Keypad Delayed for CFP
7-Nov	CAD Design for Pump Casing, and Start Coding the Motor/Pump	In Progress	Coding motor needs to incorporate keypad
14-Nov	CFP assembly	Complete	
18-Nov	Results evaluated for improvements needed on final design	Complete	
23-Nov	CFP results assembled for CFP presentations	Complete	
1-Dec	CFP presentation	Today	

Spring 2017 Milestones

Date	Task/Milestone	Status	Comments
19-Dec	Update Code for Speaker		
19-Dec	Update Code for LCD		
11-Jan	Configure Memory Card and Determine Power Management of System		
18-Jan	Testing of Pump Delivery System		
10-Feb	Make adjustments to the Insulin Pump Casing		
24-Feb	Test the Motor/Pump configuration with Cartridge		
6-Mar	3D Print Casing		
17-Mar	Assemble Entire System Together		
27-Mar	Testing Entire Insulin Pump Assembly (in Casing)		
28-Mar	Design revisions and recommendations		
13-Apr	Design Day		

Budget

Current Purchase					
ltem	Price	Quantity	Cost	Total Budget	400
Motor	32.99	1	32.99	Total Cost	70.11
Cartridge	0	1	0	Current Budget	329.89
LCD Screen	19.13	1	19.13		
Microcontroller	8.99	1	8.99		
Speaker	9	1	9		
Future Purchase					
ltem	Price	Quantity	Cost		
Sensor	57.99	3	173.97		
Case	19.99	1	19.99	Total Budget	400
Circuitboard	2.99	1	2.99	Additional Cost	206.93
Breadboard	2.99	1	2.99	Future Budget	122.96
Jumper Cables	6.99	1	6.99		

CFP Setup

CFP Description

Rack and Pinion Model:

- A simple rack and pinion system, connected to a motor, is used in order to create the linear motion necessary to activate a syringe, and push insulin into the body.
- The pinion(small gear) is located on the shaft of the motor. As the motor turns the pinion teeth comes into contact with the rack(linear gear), generating linear motion. This linear motion propels the syringe push rod into the syringe cylinder.
- In order to make this presentation more presentable, the system was set up on a poster board.
- In order to make the CFP measureable, a small graduated cylinder is placed under the board to measure the displaced fluid.

Solidworks Renderings

Test Process

- 1. Motor Position
 - a. Program the motor to go a specified degree.
 - b. Measure degree travelled using a protractor to confirm accuracy.
- 2. Change in Volume
 - a. Set volume will be placed into the cartridge and the location of the plunger will be marked
 - b. The motor will be set to a degree, displacing the plunger and allowing the fluid to flow through the tube into a bowl and then measured with a graduated syringe that has an accuracy of a hundredth of a mL.
 - **C.** The distance the plunger moved and the amount of fluid displaced will be noted and compared.
- 3. Battery Life
 - a. Using a Multimeter, the amperage of the motor will be tested while it is plugged into the power but not turning. It will be measured again while the motor is turning.

Motor Position

- Using a protractor, several degrees were programmed into the motor, each degree was marked.
- When testing the accuracy of the degrees, we found that the degrees travelled were close to the degrees programmed. Error increased as the angle increased.
- The error will be compensated for in the future coding

Motor Position

Input Degree	Test 1	Test 2	Test 3
20°	21°	21°	21°
40°	42°	42°	<mark>42</mark> °
70°	74°	75°	75°
90°	96°	97°	97°
110°	117°	<mark>118°</mark>	<mark>118°</mark>
140°	148°	149°	<mark>14</mark> 9°
160°	169°	169°	169°

- Change in Volume
 - Each test was compared to values calculated with gear equivalence diameter (r=5.189mm), the ratio of fluid displacement to plunger displacement (R=1mL/9.1mm), and the following equations.
 - Theta*r = linear displacement
 - Linear displacement *R = theaoretical fluid displacement
 - Test 1: Motor was programmed to go to 180 degrees and stop. Fluid measured should be approximately 1.66 mL.
 - Actual fluid measured averaged to 1.74 mL
 - Test 2: The motor was programmed to go 36 degrees, which would approximately be 20 units and .2 mL
 - When tested, the liquid had a displacement of roughly .2 mL. Originally our calculations showed that this should have been done with a movement of 20 degrees, however we found that this did not displace quite .2mL. After the first increment however, there is a displacement of .2 mL with 20 degrees. The volume of the output fluid matched the .2 mL

• Change in Volume

Test	0-180°	0-20°
1	1.78	0.21
2	1.73	0.22
3	1.66	0.21
4	1.72	0.19
5	1.79	0.19
Average	1.736	0.204

Battery Life

- Using a Multimeter, the amperage of the motor was tested to be roughly 265 mA Battery life calculation gives us 45.66 hrs for the motors
- Previous calculation shows that the motor should last for 63.58 hrs, but that was for a DC motor, not a servo.

Measurement	Amps
1	265
2	263
3	267
4	265
5	265
Avg.	265

Battery Life

Battery (AA) Parameters		
Average Time	AT	
Average Use	AU	
Active Load (In use)	AL	
Battery Capacity	BC	
Percent Dead Count	DP	
Circuit Load(not used)	CL	
Battery Life	BL	

(BC*DP)BLCL+

Demo

• 0.2 mL increments

Demo

• 0.2 mL, 0° to 36° to 0°

Summary

CFP:

- Linear motion needed for standard insulin cartridge.
- Rack and pinion method used to transfer motor motion to cartridge direction
- Simple math of degrees -> linear motion used to calculate displacement in the syringe
- Demo allows us to fine tune the gearing needed for an accurate system (yet to be done)

What's Next:

- 1. Fine tune gears
- 2. Fix the Coding
- 3. Set up user-device interactions
- 4. Set up safety checks
- 5. Recreate casing to fit system